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Abstract— In machine learning, feature selection is 
preprocessing step and can be effectively reduce high 
dimensional data, remove irrelevant data, increase learning 
accuracy, and improve result comprehensibility. High 
dimensionality of data take over efficiency and effectiveness 
points of view in feature selection algorithm. Efficiency stands 
required time to find a subset of features, and the effectiveness 
belongs to good quality of the subset of features. In feature 
selection technique high dimensional data contains many 
irrelevant and redundant features. Irrelevant features make 
available no useful information in any context, and redundant 
features provide no more information than the selected 
features. Good feature subsets contain features highly 
predictive of (correlated with) the class, yet not predictive of 
(uncorrelated with) each other. A subset of useful features to 
produce compatible results as the original set of features is 
identified from feature selection. 

Keywords-Feature subset selection; graph-theoretic 
clustering; filter method.  

I. INTRODUCTION 

In machine learning, feature selection, also known as 
variable subset selection, is the process of selecting a subset 
of relevant features for use in model construction. Feature 
selection techniques have benefits when constructing 
correlated models: improved model to interpret the hidden 
meaning, shorter (small) training times, and enhanced 
generalization by reducing over fitting. Feature selection is 
helpful as part of the data analysis process, as it identifies 
important features for prediction. Choosing a subset of good 
features according to target concepts, feature subset 
selection has been effective to reduce dimensionality, 
removing irrelevant data, increasing learning accuracy, and 
improving comprehensibility. Feature subset selection 
algorithms for machine learning applications can be divided 
into four main categories: Wrapper, Filter, Hybrid, and 
Embedded methods.  

Wrapper methods use a predetermined learning model to 
score a feature subsets. A wrapper methods train a fresh 
model for new subset, they have high accuracy but are 
expensive to compute and also limited in generality of 
selected features. Filter methods are faster than wrapper 
methods but produces a features set which is independent 
from learning algorithms with better generality. Filter 
methods measures include the correlation coefficient, 
Mutual Information, distance and consistency measurements 
to sort a good subset. Filtering approach to feature selection 
involves a greater degree of search through the feature space 
but the accuracy of the algorithms is not guaranteed. 
Embedded algorithms integrates feature subset selection as a 
training process and they are fixed to learning methods, 

hence more efficient than Wrapper and Filter methods. 
Decision tree algorithms are best example of embedded 
methods. A combination of filter methods and wrapper 
methods form a hybrid methods which achieves best 
possible performance with a specific learning algorithm with 
similar time complexity like the filter methods. The wrapper 
methods tend to over fit on small training sets. The main 
benefits of filter methods are they are faster and they have 
ability to scale to large datasets. With respect to the filter 
feature selection methods, the application of cluster analysis 
clearly give practical demonstration and explanation to be 
more effective than traditional feature selection algorithms. 
The distributional clustering of words is agglomerative in 
nature and reduce the high dimensionality of text data since 
each word cluster can be treated as single feature but are 
expensive compute. 

In cluster analysis, most of the applications use a graph-
theoretic methods because they produce good results. The 
graph-theoretic clustering is simple since it compute a 
neighborhood graph of instances, then delete any edge in 
graph that is much short or long than its neighbors. The 
graph theoretic clustering results in forest and trees in forest 
represents a cluster. In this survey graph-theoretic 
clustering algorithms are used to features, particularly 
minimum spanning tree based clustering algorithms.  

II. FEATURE SUBSET SELECTION 

Feature as a group for suitability is evaluated by a subset 
selection a subset of features. Feature subset selection 
methods are divided into Wrappers, Filters, Embedded and 
Hybrid methods. Embedded techniques are embedded in and 
specific to a model. Wrappers use a search algorithm to 
search through the space of possible features and evaluate 
every subset by running a model on the subsets. Wrappers 
are computationally expensive and they have a risk of over 
fitting to the model. Filters are like Wrappers in the search 
approach, but instead of evaluating a filter against a model, a 
simpler filter is evaluated. Two popular filter metrics for 
classification problems correlation and mutual information, 
although both are not true metrics. There are, however, true 
metrics that are functions of the mutual information. Other 
available filter metrics are: Correlation-based feature 
selection, Consistency-based feature selection, and Class 
separability, which include Error probability, Inter class 
distance, probabilistic distance, and Entropy. 

In feature selection technique high dimensional data 
contains many irrelevant and redundant features. Irrelevant 
features make available no useful information in any 
context, and redundant features provide no more 
information than the selected features. Irrelevant features do 
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not contribute to the predetermined accuracy and redundant 
features do not redound to getting a good predictor. 
Therefore feature selection is the process of identifying as 
many irrelevant and redundant features and removing them. 
The feature subset selection algorithms can eliminate 
irrelevant features but do not handle redundant features [20], 
[24], [27], [29], [32], and [37]. Some other algorithms can 
eliminate irrelevant features as well as handles redundant 
features [22], [31], [42].  

A. Feature Selection Definitions 

Let X   be the original set of features, with cardinality |X| 
= n. The continuous feature selection problem refers to the 
assignment of weights wi to each feature xi ϵ X   in such a 
way that the order corresponding to its theoretical relevance 
is preserved. The feature selection problem can be seen as a 
search in a hypothesis space (set of possible solutions). In 
the case of the binary problem, the number of potential 
subsets to evaluate is 2n. 
Definition (Feature Selection) Let J(X’) be an evaluation 
measure to be optimized defined as J : X’ ⊂ X R. The 
feature subset selection is viewed as: 

 Set |X| = m<n. Find X’ ⊂ X, such that J(X’) is 
maximum. 

 Set a value J0, this is, the maximum J that is going 
to be tolerated. Find the X’ ⊂ X with smaller |X’|, 
such that J(X) > J0. 

 Find the compromise among minimizing |X’| and 
maximizing J(X’). 

Note that, optimal subset of feature is not unique always. 
 

B. Characteristics of Feature Selection Algorithms 

Figures The feature selection algorithms have following 
important characteristics: 

1)  Search Organization: A search algorithm is useful for 
driving the feature selection process using a specific 
strategy. In general, a search procedure examines only a 
part of the search space. When a specific state has to be 
visited, the algorithm uses the information of the previously 
visited states and eventually heuristic knowledge about 
non-visited ones [33]. 

2)  Generation of Successor:  Mechanism by which 
possible variants (successor candidates) of the current 
hypothesis are proposed. Up to five different operators can 
be considered to generate a successor for each state: 
Forward, Backward, Compound, Weighting, and Random 
[33]. 

3)  Evaluation measure:  Function by which successor 
candidates are evaluated, allowing to compare different 
hypothesis to guide the search process [33]. 

III. FEATURE SUBSET SELECTION ALGORITHMS 

Irrelevant features as well as redundant features largely 
affect the learning machines accuracy. Thus, to identify and 
remove as much of the irrelevant and redundant information 
as possible, feature subset selection should be useful. 

“Good feature subsets contain features highly correlated 
with the class i.e. predictive of class, yet uncorrelated with 
each other i.e. not predictive of each class.” A feature 
subset selection algorithms can efficiently and effectively 
handle both irrelevant and redundant features, and obtains a 
good feature subsets. The two connected components of 
irrelevant feature removal and redundant feature 
elimination are composed to design feature selection 
framework (shown in Figure 1). The first i.e. irrelevant 
feature removal obtains features which are relevant to the 
target concept by eliminating irrelevant ones, and the 
second eliminates redundant features from relevant ones via 
selecting representatives from various feature clusters, and 
hence results the final subset. 

 
Figure 1: Framework of feature subset selection algorithms 

 

A definition of relevant features is presented as suppose ܨ 
to be the full set of features, ܨ ∋ ݅ܨ be a feature, ܵ݅ = ܨ − 
 be a value assignment of all ݅’ݏ and ܵi’ ⊆ ܵ݅. Let {݅ܨ}
features in ܵi’, ݂݅ a value-assignment of feature ݅ܨ, and ܿ a 
value-assignment of the target concept ܥ. The relevant 
features can be formally defined as. 
Definition 1: (Relevant feature) ݅ܨ is relevant to the target 
concept ܥ if and only if there exists some ݅ݏ, ݂݅ and ܿ, such 
that, for probability(ܵi’ = ݅ܨ ,݅’ݏ = ݂݅) > 0, 
 .(݅ݏ = ݅ܵ ∣ ܿ = ܥ) =⁄ (݂݅ = ݅ܨ ,݅’ݏ= ’iܵ ∣ ܿ = ܥ)
Otherwise, feature ݅ܨ is an irrelevant feature. 
However, the definition gives that feature ݅ܨ is relevant 
when using ܵ݅ ∪ {݅ܨ} to describe the target concept. The 
reason behind is that either ݅ܨ is interactive with ܵ݅ or ݅ܨ is 
redundant with ܵ݅ − ܵi .  , we say ݅ܨ is indirectly relevant to 
the target concept. 

Most of the information is already present in other 
features is also contained in redundant features. As a result, 
the redundant features do not contribute to getting better 
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interpreting ability to the target concept. This is defined by 
Liu and Yu based on Markov blanket. 
Definition 2: (Markov blanket) Given a feature ܨ ∋ ݅ܨ, let 
 ݅ܨ is said to be a Markov blanket for ݅ܯ ,(݅ܯ ∋⁄ ݅ܨ) ܨ ⊃ ݅ܯ
if and only if 
 .(݅ܯ ∣ ܥ ,{݅ܨ}− ݅ܯ− ܨ) = (݅ܯ,݅ܨ ∣ ܥ ,{݅ܨ}− ݅ܯ− ܨ)
Definition 3: (Redundant feature) Let ܵ be a set of features, 
a feature in ܵ is redundant if and only if it has a Markov 
Blanket within ܵ. 
      Redundant features are not necessary for a best subset 
because their values are completely uncorrelated with target 
concepts while relevant features have strong correlation 
with target concept so relevant features are invariably 
necessary for a best subset. Thus, conception of feature 
relevance and feature redundancy are normally in terms of 
feature correlation and feature-target concept correlation. 
How much distribution of the feature values and target 
classes differ from statistical independence is measured 
through mutual information. This is a straight forward 
estimation of correlation between feature values and target 
classes or between feature values. To derive symmetric 
uncertainty (ܷܵ) from the mutual information by 
normalizing it to the entropies feature values and target 
classes or between feature values. Thus, we select 
symmetric uncertainty as the measure of correlation 
between either two features or a feature and the target 
concept. 
 The symmetric uncertainty can be defined as 

ܷܵ(ܺ, ܻ ) . 

Where, 
 .ܺ is the entropy of a discrete random variable (ܺ)ܪ (1
Suppose (ݔ) is the initial probabilities for all values of ܺ, 
 is defined by (ܺ)ܪ
 . − = (ܺ)ܪ
 
2) Gain (ܺ∣ܻ) is the amount by which the entropy of ܻ 
reduces. It returns the additional information about ܻ 
provided by ܺ and is called the information gain which is 
defined by 
 ( ܻ∣ܺ)ܪ − (ܺ)ܪ = (ܻ∣ܺ)݊݅ܽܩ

 .(ܺ∣ ܻ)ܪ − ( ܻ)ܪ =      
Where ܪ(ܺ∣ܻ ) is the conditional entropy which measures 
the remaining entropy (i.e. uncertainty) of a random 
variable ܺ given that the value of another random variable 
ܻ is known. Suppose (ݔ) is the initial probabilities for all 
values of ܺ and (ݕ∣ݔ) is the succeeding probabilities of ܺ 
given the values of ܻ , ܪ(ܺ∣ܻ ) is defined by 
 .(ݕ∣ݔ) log2 (ݕ∣ݔ)ܺ∋ݔΣ(ݕ)ܻ∋ݕΣ− = ( ܻ∣ܺ)ܪ
Information gain is a symmetrical measure. Symmetric 
uncertainty deals a couple of variables symmetrically, it 
compensates for information gain’s bias toward variables 
with more values and normalizes its value to the range [0,1]. 
A value 1 of ܷܵ(ܺ, ܻ ) indicates that knowledge of the 
value of either one completely guess the value of the other 
and the value 0 reveals that ܺ and ܻ are independent.  If the 
values are discretized properly in advance, the entropy 
based measure handles nominal or discrete variables, and 
they can deal with continuous features also. Given ܷܵ(ܺ, ܻ ) 
the symmetric uncertainty of variables ܺ and ܻ, the 

correlation F-Correlation between a pair of features, the 
feature redundancies F-Redundancy, the relevance T-
Relevance between a feature and the target concept ܥ, and 
the representative feature R-Feature of a feature cluster can 
be defined as follows. 
Definition 4: (T-Relevance) The relevance between the 
feature ܨ ∋ ݅ܨ and the target concept ܥ is referred to as the 
T-Relevance of ݅ܨ and ܥ, and denoted by ܷܵ(ܥ ,݅ܨ). 
If ܷܵ(ܥ ,݅ܨ) is greater than a predetermined threshold ߠ, we 
say that ݅ܨ is a strong T-Relevance feature. 
Definition 5: (F-Correlation) The correlation between any 
pair of features ݅ܨ and (݆ =⁄ ݅ ∧ ܨ ∋ ݆ܨ ,݅ܨ) ݆ܨ is called the 
F-Correlation of ݅ܨ and ݆ܨ , and denoted by ܷܵ(݆ܨ ,݅ܨ). 
Definition 6: (F-Redundancy) Let 

 be a cluster of features if 
 is (ܥ ,݅ܨ)ܷܵ < (݆ܨ ,݅ܨ)ܷܵ ∧ (ܥ ,݅ܨ)ܷܵ ≤ (ܥ ,݆ܨ)ܷܵ ,ܵ ∋ ݆ܨ∃
always corrected for each ݅ܨ ∈ ܵ (݅ ⁄= ݆), then ݅ܨ are 
redundant features with respect to the given ݆ܨ (i.e. each ݅ܨ 
is a F-Redundancy). 
Definition 7: (R-Feature) A feature  

  is a representative 
feature of the cluster ܵ (i.e. ݅ܨ is a R-Feature) if and only if,  

 
This means the feature, which has the strongest T-
Relevance, can act as an R-Feature for all the features in the 
cluster. 
 According to the above definitions, feature subset 
selection can be the process that identifies and retains the 
strong T-Relevance features and selects R-Features from 
feature clusters. The behind heuristics are that 

1) irrelevant features have no/weak correlation with 
target concept; 

2)  redundant features are assembled in a cluster and a 
representative features can be taken out of the cluster. 
Definition 8: (Predominant feature) A relevant feature is 
predominant iff it does not have any inexact Markov 
blanket in the current set. 

A. Relief-F 

The ReliefF (Relief-F) algorithm [36] (Kononenko, 1994) is 
not limited to two class problems, is more robust and can 
deal with incomplete and noisy data. Similarly to Relief, 
ReliefF randomly selects an instance Ri (line 3), other  than 
searches for k of its nearest neighbors from the similar class 
called nearest hits Hj (line 4), and also k nearest neighbors 
from each of the dissimilar classes, called nearest misses 
Mj(C) (lines 5 and 6). It upgrades the quality estimation 
W[A] for all attributes A depending on their values for Ri, 
hits Hj and misses Mj(C) (lines 7, 8 and 9). The upgrade 
formula is same as to that of Relief (lines 5 and 6 on Figure 
1), excluding that we average the contribution of all the hits 
and all the misses. The contribution for each class of the 
misses is weighted with the initial probability of that class 
P(C) (estimated from the training set). Since the 
contributions of hits and misses in each step to be in [0, 1] 
and also symmetric to ensure that misses’ probability 
weights sum to 1. As the class of hits is missing in the sum 
we have to divide each probability weight with factor 1 – P 
(class (Ri)) (which represents the sum of probabilities for 
the misses’ classes). The process is repeated for m times. 
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Input: for each training instance a vector of attribute values 
and the class value 
Output: the vector W of estimations of the qualities of 
attributes 
1  set all weights W[A] = 0.0; 
2  for i = 1 to m do begin 
3   randomly select an instance Ri; 
4   find k nearest hits Hj; 
5   for each class C ≠ class(Ri) do 
6  from class C find k nearest 

misses Mj(C); 
7   for A = 1 to a do 
8   	

 

 9  	

	
 
10 end; 

Selection of k hits and misses is the basic 
difference to Relief and ensures greater robustness of the 
algorithm concerning noise. User-defined parameter k 
controls the locality of the estimates. For most purposes it 
can be safely set to 10 (see (Kononenko, 1994).To deal with 
incomplete data we change the diff function. Missing 
values of attributes are treated probabilistically. We 
calculate the probability that two given instances have 
different values for given attribute conditioned over class 
value: 

 if one instance (e.g., I1) has unknown value: 

 
 if both instances have unknown value: 

 

 
Conditional probabilities are inexactd with relative 

frequencies from the training set. 

B. FCBF 

The relevance and redundancy analysis can be realized 
by an algorithm, called FCBF (Fast Correlation-Based 
Filter) [42], [45]. FCBF algorithm involves two connected 
steps: (1) a relevant features subset selection, and (2) 
selection of main i.e. primary features from relevant ones. 
For a data set S with N features and class C, the algorithm 
finds a set of predominant features Sbest . 
input: S(F1,F2, ...,FN,C) // a training data set 
δ  �// a predefined threshold 
output: Sbest   // a selected subset 
1  begin 
2  for i = 1 to N do begin 
3     calculate S Ui,c for Fi; 
4   if (SUi,c > �) 
5   append Fi to Slist ; 

6  end; 
7  order Slist in descending SUi,c value; 
8  Fj = getFirstElement(Slist); 
9  do begin 
10  Fi = getNextElement(Slist ,Fj); 
11  if (Fi <> NULL) 
12   do begin 
13   if (SUi, j ≥ SUi,c) 
14   remove Fi from Slist ; 
15   Fi = getNextElement(Slist ,Fi); 
16   end until (Fi == NULL); 
17  Fj = getNextElement(Slist ,Fj); 
18  end until (Fj == NULL); 
19  Sbest = Slist ; 
20  end; 
 
In the prior step (lines 2 - line 7), it calculates the SU value 
for each features selects relevant features into S’list based on 
a predefined threshold , and orders them in a descending 
order according to their SU values. In the posterior step 
(lines 8 –line 18), it next processes the ordered list Slist to 
select primary features. A feature Fj that has already been 
determined to be a predominant (primary) feature can 
always be used to filter out other features for which Fj 
forms an inexact Markov blanket. Since the feature with the 
highest C-correlation does not have any inexact Markov 
blanket, it must be one of the predominant features. So the 
iteration starts from the  very first element in Slist (line 8) 
and continues. For all the remaining features (from the one 
right next to Fj  to the last one in Slist ), if Fj happens to form 
an inexact Markov blanket for Fi (line 13), Fi will be 
removed from Slist . After first round of filtering features 
based on Fj, the algorithm will take the remaining feature 
right next to Fj as the new reference (line 17) to replicate 
the filtering process. The algorithm stops until no more 
predominant (primary) features can be selected. Figure 2 
illustrates how predominant (primary) features are selected 
with the rest features removed as redundant ones. 

 
Figure 2: Selection of predominant features 
 

In Figure 2, six features are selected as relevant ones and 
ranked according to their C-correlation values, with F1 
being the most relevant one. In the first round, F1 is 
selected as a predominant feature, and F2 and F4 are 
removed based on F1. In the second round, F3 is selected, 
and F6 is removed based on F3. In the last round, F5 is 
selected.  

C. CFS 

The CFS (Correlation-based Feature Selector) [22] is a 
simple filter algorithm that ranks feature subsets according 
to a correlation based heuristic evaluation function. The 
bias of the evaluation function is toward subsets that 
contain features that are highly correlated with the class and 
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uncorrelated with each other. Irrelevant features should be 
ignored because they will have low correlation with the 
class. Redundant features should be screened out as they 
will be highly correlated with one or more of the remaining 
features. The acceptance of a feature will depend on the 
extent to which it predicts classes in areas of the instance 
space not already predicted by other features. CFS’s feature 
subset evaluation function is for ease of reference:	

 
Where,  is the heuristic “merit” of a feature subset S 
containing k features, is the mean feature-class 
correlation (f  S), and  is the average feature-feature 
inter-correlation. 

The numerator of above equation can be thought of as 
providing an indication of how predictive of the class a set 
of features are; the denominator of how much redundancy 
there is among the features. 

CFS calculates feature-class and feature-feature 
correlations using one of the measures and then searches 
the feature subset space. The subset with the highest merit 
(as measured) found during the search is used to reduce the 
dimensionality of both the original training data and the 
testing data. Both reduced datasets may then be passed to a 
machine learning scheme for training and testing. It is 
important to note that the general concept of correlation-
based feature selection does not depend on any one module 
(Such as discretization). A more sophisticated method of 
measuring correlation may make discretization unnecessary. 
Similarly, any conceivable search strategy may be used 
with CFS. 

D. FAST 

Based on the Minimum Spanning Tree method a feature 
subset selection FAST algorithm [1]. The FAST algorithm 
works as, initially features are separated into clusters by 
using graph-theoretic clustering methods and then the most 
representative features which is strongly related to target 
classes is selected from each cluster to form the final subset 
of features. Features in various clusters are comparatively 
independent, the clustered strategy of feature subset 
selection algorithm has a high chances of producing a 
subset of independent and useful features. This algorithm 
requires the construction of the minimum spanning tree; 
from a weighted complete graph; the partitioning of the 
minimum spanning tree into a forest with each tree 
representing a cluster; and the selection of representative 
features from the clusters. 

For a data set ܦ with ݉ features {݉ܨ ,... ,2ܨ ,1ܨ} = ܨ 
and class ܥ, we compute the T-Relevance ܷܵ(ܥ ,݅ܨ) value 
for each feature (݉ ≥ ݅ ≥ 1) ݅ܨ in the first step. The features 
whose ܷܵ(ܥ ,݅ܨ) values are greater than a predefined 
threshold ߠ comprise the target-relevant feature subset ܨ′ = 
 .(݉ ≥ ݇) {݇′ܨ ,... ,2′ܨ ,1′ܨ}
In the second step, we first calculate the F-Correlation 
 and ݅′ܨ value for each pair of features (݆′ܨ ,݅′ܨ)ܷܵ

 as ݆′ܨ and ݅′ܨ Then, viewing features .(݆ =⁄ ݅ ∧ ′ܨ ∋݆′ ,݅′ܨ)݆′ܨ
vertices and ܷܵ(ܨ ,݅′ܨ′݆) (݅ ⁄= ݆) as the weight of the edge 
between vertices ܨ′݅ and ܨ′݆ , a weighted complete graph ܩ 

 {[݇ ,1] ∋ ݅ ∧ ′ܨ ∋ ݅′ܨ ∣ ݅′ܨ} = ܸ is constructed where (ܧ,ܸ) =
and {݆ =⁄ ݅ ∧ [݇ ,1] ∋ ݆ ,݅ ∧ ′ܨ ∋ ݆′ܨ ,݅ ′ܨ) ∣ (݆ ′ܨ ,݅ ′ܨ)} = ܧ. 
As symmetric uncertainty is symmetric further the F-
Correlation ܷܵ(ܨ ,݅ ′ܨ′ ݆) is symmetric as well, thus ܩ is an 
undirected graph. 
The complete graph ܩ reflects the correlations among all 
the target-relevant features. Unfortunately, graph ܩ has ݇ 
vertices and ݇(݇−1)/2 edges. For high dimensional data, it 
is heavily dense and the edges with different weights are 
strongly interweaved. Moreover, the decomposition of 
complete graph is NP-hard [26]. Thus for graph ܩ, we build 
a MST, which connects all vertices such that the sum of the 
weights of the edges is the minimum, using the well-known 
Prim algorithm [54]. The weight of edge (݆ܨ ,݅′ܨ) is F-
Correlation ܷܵ(݆ܨ ,݅′ܨ). After building the MST, in the third 
step, initially remove the edges ݆ܨ ,݅ܨ) ∣ (݆ܨ ,݅′ܨ)} = ܧ 
 whose weights are smaller than ,{݆ ≠ ݅ ∧ [݇ ,1] ∋ ݆ ,݅ ∧ ′ܨ ∋
both of the T-Relevance ܷܵ(ܥ ,݅′ܨ) and ܷܵ(ܥ ,݆ܨ), from the 
MST. Each deletion results in two disconnected trees ܶ1 
and ܶ2. Assuming the set of vertices in any one of the final 
trees to be ܸ (ܶ), we have the property that for each pair of 
vertices (݆ܨ ,݅′ܨ ∈ ܸ (ܶ)), ܷܵ(ܨ ,݅′ܨ′݆) ≥ ܷܵ(ܥ ,݅′ܨ) ∨ ܷܵ(ܨ′݅, 
 .always holds (ܥ ,݆′ܨ)ܷܵ ≤ (݆ܨ
 
Algorithm: FAST 
inputs: D(ܥ ,݉ܨ ,... ,2ܨ ,1ܨ) - the given data set ߠ - the T-    
Relevance threshold. 
output: S - selected feature subset. 
// Part 1: Irrelevant Feature Removal 
1  for i = 1 to m do 
2  T-Relevance = SU (ܥ ,݅ܨ) 
3  if T-Relevance > ߠ  then  
4  S = S ∪ {݅ܨ}; 
5 end if 
6 end for 
//Part 2: Minimum Spanning Tree Construction 
7 G = NULL; //G is a complete graph 
8 for each pair of features {ܨ ,݅′ܨ′݆ } ⊂ S do 
9  F-Correlation = SU (ܨ , ݅′ܨ′݆ ) 
 ݏܽ F-Correlation ݄ݐ݅ݓ ܩ ݐ ݆′ܨ ݎ / and ݅ܨ ݀݀ܣ 10

 ;݁݃݀݁ ݃݊݅݀݊ݏ݁ݎݎܿ ݄݁ݐ ݂ ݐ݄݃݅݁ݓ ݄݁ݐ
11 end for 
12  minSpanTree = Prim (G); //Using Prim Algorithm to          

generate the minimum spanning tree 
//Part 3: Tree Partition and  Representative Feature 
Selection 

13 Forest = minSpanTree 
14 for each edge ݆݅ܧ  ∈ Forest do 
15  if SU(ܨ ,݅′ܨ′݆ ) < SU(ܥ ,݅′ܨ) ∧ SU(ܨ ,݅′ܨ′݆ ) < 

SU(ܥ, ݆′ܨ) then 
13 Forest = Forest − ݆݅ܧ 
14  end if 
15 end for 
16 S = ߶ 
17 for each tree ܶ݅ ∈ Forest do 
 (ܥ,݇′ܨ)SU  ݅ܶ ∋ ݇′ܨargmax = ܴ݆ܨ  18
19  S = S ∪ {ܴ݆ܨ}; 
20 end for 
21 return S.  
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IV. EXPERIMENTAL STUDY  

A. Experimental Setup 

To evaluate the performance of feature subset selection 
algorithms and compare with other feature selection 
algorithms the experimental set up as follows. 

The algorithms are compared with different feature 
selection algorithms, like  (i) FCBF [42], [45], (ii) Relief-F 
[36], (iii) CFS [22], (iv) FAST [1], respectively. FCBF and 
Relief-F evaluate features separately. For FCBF, in the 
experiments, the relevance threshold to be the ܷܵ value of 
the ݉ہ/log݄݉ݐۂ ranked feature for every data set (݉ is the 
number of features in a given data set). Relief-F searches 
for nearest neighbors of instances of different classes and 
weights features according to how well they differentiate 
instances of different classes. CFS uses best-first search 
based on the evaluation of a subset that contains features 
highly predictive of the target concept, yet not predictive of 
each other. For FAST algorithm, set ߠ to be the ܷܵ value of 
the ہ√݉∗lg݄݉ݐۂ ranked feature for each data set. 

Different types of classification algorithms are used to 
classify data sets prior and after feature selection. Such as (i) 
the tree-based C4.5, (ii) the probability-based Naive Bayes 
(NB), (iii) the rule-based RIPPER, (iv) the instance-based 
lazy learning algorithm IB1, respectively. Naive Bayes 
employs a probabilistic method for classification by 
multiplying the individual probabilities of every feature-
value pair. This algorithm assumes independence among 
the features and even then provides excellent classification 
results. Decision tree learning algorithm C4.5 is an 
extension of ID3 that accounts for unavailable values, 
continuous attribute value ranges, pruning of decision trees, 
rule derivation etc. The tree comprises of nodes (features) 
that are selected by information entropy. Instance-based 
learner IB1 is a single-nearest neighbor algorithm, and it 
classifies entities taking the class of the closest associated 
vectors in the training set via distance metrics. It is the 
simplest among the algorithms used in our study. Inductive 
rule learner RIPPER (Repeated Incremental Pruning to 
Produce Error Reduction) is a propositional rule learner that 
defines a rule based detection model and seeks to improve it 
iteratively by using different heuristic techniques. The 
constructed rule set is then used to classify new instances. 

When evaluating the performance of the feature subset 
selection algorithms, different metrics, such as (i) the 
proportion of selected features (ii) the time to obtain the 
feature subset, (iii) the classification accuracy, are used. 
The proportion of selected features is the ratio of the 
number of features selected by a feature selection algorithm 
to the original number of features of a data set.  

B. CFS 

In order to make the best use of the data and obtain 
stable results, a (M = 5) × (N = 10)-cross-validation 
strategy is used. That is, for each data set, each feature 
subset selection algorithm and each classification algorithm, 
the 10-fold cross-validation is repeated M = 5 times, with 
each time the order of the instances of the data set being 
randomized. This is because many of the algorithms exhibit 

order effects, in that certain orderings dramatically improve 
or degrade performance. Randomizing the order of the 
inputs can help diminish the order effects. In the experiment, 
for each feature subset selection algorithm, we obtain M×N 
feature subsets Subset and the corresponding runtime Time 
with each data set. Average ∣Subset∣ and Time, we obtain 
the number of selected features further the proportion of 
selected features and the corresponding runtime for each 
feature selection algorithm on each data set. For each 
classification algorithm, we obtain M×N classification 
Accuracy for each feature selection algorithm and each data 
set. Average these Accuracy, we obtain mean accuracy of 
each classification algorithm under each feature selection 
algorithm and each data set. The procedure Experimental 
Process shows the details.  
Procedure: Experimental Process 
1 M = 5, N = 10 
2 DATA = {35ܦ,... ,2ܦ,1ܦ } 
3 Learners = {NB, C4.5, IB1, RIPPER} 
4 FeatureSelectors = {FAST, FCBF, ReliefF, CFS} 
5 for each data ∈ DATA do 
6     for each times ∈ [1, M] do 
7     randomize instance-order for data 
8     generate N bins from the randomized data 
9 for each fold ∈ [1, N] do 
10  TestData = bin[fold] 
11  TrainingData = data - TestData 
12      for each selector ∈ FeatureSelectors do 
13      (Subset, Time) = selector(TrainingData) 
14 TrainingData′  = select Subset from    

TrainingData 
15   TestData′  = select Subset from TestData 
16   for each learner ∈ Learners do 
17  classifier = learner(TrainingData′ ) 
18  Accuracy = apply classifier to TestData′ 
19  end for 
20       end for 
21 end for 
22     end for 
23 end for 
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